Preview

Title in english

Advanced search

Modern aspects of cerebral stroke modeling

Abstract

Modelling of cerebral stroke plays a key role in studying the mechanisms of pathogenesis, diagnosis and development of new effective therapies. The aim of the study is to critical analysis of data on methods of modeling ischemic and hemorrhagic stroke presented in peer-reviewed sources indexed in the databases Pubmed and the Russian Science Citation Index for the period 2020-2024.. Results and conclusions. Experimental modeling of cerebral stroke includes in vitro, in vivo and in silico approaches. In vitro modeling allows us to study the molecular and cellular mechanisms of damage to nervous tissue, but does not fully reflect the complex intercellular interactions in response to the action of a damaging factor. In silico modeling is based on computational neuroscience methods, allowing to develop mathematical models for predicting the course and outcomes of acute cerebrovascular injury and to study individual mechanisms of damage to nervous tissue In vivo modeling is an economically profitable, highly reproducible approach, due to the wide availability of laboratory animals and provides low financial costs for their maintenance. The most preferred models of ischemic and hemorrhagic stroke are endovascular filamentous occlusion of the middle cerebral artery, collagenase and balloon models of parenchymal hemorrhage induction, since they allow the most accurate modeling of acute cerebrovascular damage to the human brain in animal models.

About the Authors

M. V. Osikov
South-Urals State Medical University, Ministry of Health of Russia; Chelyabinsk Regional Clinical Hospital
Russian Federation

Chelyabinsk



A. V. Shelomentsev
South-Urals State Medical University, Ministry of Health of Russia; Chelyabinsk Regional Clinical Therapeutic Hospital for War Veterans
Russian Federation

Chelyabinsk



References

1. Feigin V. L. et al. World Stroke Organization (WSO): global stroke fact sheet 2022 // International Journal of Stroke. – 2022. – Т. 17. – №. 1. – С. 18-29.

2. Ignatyeva V. I. et al. Social and economic burden of stroke in Russian Federation // Zhurnal nevrologii i psikhiatrii imeni SS Korsakova. – 2023. – Т. 123. – №. 8. Vyp. 2. – С. 5-15.

3. Qin C. et al. Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions // Signal transduction and targeted therapy. – 2022. – Т. 7. – №. 1. – С. 215.

4. Alsbrook D. L. et al. Neuroinflammation in acute ischemic and hemorrhagic stroke // Current neurology and neuroscience reports. – 2023. – Т. 23. – №. 8. – С. 407-431.

5. Xiao Z. et al. Reduction of lactoferrin aggravates neuronal ferroptosis after intracerebral hemorrhagic stroke in hyperglycemic mice // Redox biology. – 2022. – Т. 50. – С. 102256.

6. Hochrainer K., Yang W. Stroke proteomics: from discovery to diagnostic and therapeutic applications // Circulation research. – 2022. – Т. 130. – №. 8. – С. 1145-1166.

7. Kim G. W., Sugawara T., Chan P. H. Involvement of oxidative stress and caspase-3 in cortical infarction after photothrombotic ischemia in mice //Journal of Cerebral Blood Flow & Metabolism. – 2000. – Т. 20. – №. 12. – С. 1690-1701.

8. Magid-Bernstein J. et al. Cerebral hemorrhage: pathophysiology, treatment, and future directions // Circulation research. – 2022. – Т. 130. – №. 8. – С. 1204-1229.

9. Liu B. et al. Recent advances and perspectives of postoperative neurological disorders in the elderly surgical patients // CNS neuroscience & therapeutics. – 2022. – Т. 28. – №. 4. – С. 470-483.

10. Li Y., Zhang J. Animal models of stroke // Animal models and experimental medicine. – 2021. – Т. 4. – №. 3. – С. 204-219.

11. Arkelius K. et al. Validation of a stroke model in rat compatible with rt-PA-induced thrombolysis: New hope for successful translation to the clinic // Scientific Reports. – 2020. – Т. 10. – №. 1. – С. 12191.

12. Konduri P. R. et al. In-silico trials for treatment of acute ischemic stroke // Frontiers in Neurology. – 2020. – Т. 11. – С. 558125.

13. Chaparro-Cabanillas N. et al. Transient Middle Cerebral Artery Occlusion Model of Stroke // Journal of Visualized Experiments: Jove. – 2023. – №. 198.

14. Amado B. et al. Ischemic stroke, lessons from the past towards effective preclinical models // Biomedicines. – 2022. – Т. 10. – №. 10. – С. 2561.

15. Dutra B. G. et al. Thrombus imaging characteristics and outcomes in acute ischemic stroke patients undergoing endovascular treatment // Stroke. – 2019. – Т. 50. – №. 8. – С. 2057-2064.

16. Feske S. K. Ischemic stroke // The American journal of medicine. – 2021. – Т. 134. – №. 12. – С. 1457-1464.

17. Gonzalez L. F. et al. Endovascular middle cerebral artery embolic stroke model: a novel approach // Journal of neurointerventional surgery. – 2022. – Т. 14. – №. 4. – С. 413-413.

18. Mrosk F., Hecht N., Vajkoczy P. Decompressive hemicraniectomy in ischemic stroke // Journal of Neurosurgical Sciences. – 2020. – Т. 65. – №. 3. – С. 249-258.

19. Trotman-Lucas M., Gibson C. L. A review of experimental models of focal cerebral ischemia focusing on the middle cerebral artery occlusion model // F1000Research. – 2021. – Т. 10.

20. Sheng H. et al. A modified transcranial middle cerebral artery occlusion model to study stroke outcomes in aged mice // JoVE (Journal of Visualized Experiments). – 2023. – №. 195. – С. e65345.

21. Li G. et al. Systems-level computational modeling in ischemic stroke: from cells to patients // Frontiers in Physiology. – 2024. – Т. 15. – С. 1394740.

22. Ostrova I. V. et al. A novel thromboplastin-based rat model of ischemic stroke //Brain Sciences. – 2021. – Т. 11. – №. 11. – С. 1475.

23. Seong D. et al. Target ischemic stroke model creation method using photoacoustic microscopy with simultaneous vessel monitoring and dynamic photothrombosis induction // Photoacoustics. – 2022. – Т. 27. – С. 100376.

24. Sun Y. Y. et al. A murine photothrombotic stroke model with an increased fibrin content and improved responses to tPA-lytic treatment // Blood advances. – 2020. – Т. 4. – №. 7. – С. 1222-1231.

25. Pushie M. J. et al. Multimodal imaging of hemorrhagic transformation biomarkers in an ischemic stroke model // Metallomics. – 2022. – Т. 14. – №. 4. – С. mfac007.

26. García-Serran A. et al. Targeting pro-oxidant iron with exogenously administered apotransferrin provides benefits associated with changes in crucial cellular iron gate protein TfR in a model of intracerebral hemorrhagic stroke in mice // Antioxidants. – 2023. – Т. 12. – №. 11. – С. 1945.

27. Grisotto C. et al. High-fat diet aggravates cerebral infarct, hemorrhagic transformation and neuroinflammation in a mouse stroke model / /International Journal of Molecular Sciences. – 2021. – Т. 22. – №. 9. – С. 4571.

28. Lu H. F. et al. A new central post-stroke pain rat model: autologous blood injected thalamic hemorrhage involved increased expression of P2X4 receptor // Neuroscience Letters. – 2018. – Т. 687. – С. 124-130.

29. He C. et al. Microglia in the pathophysiology of hemorrhagic stroke and the relationship between microglia and pain after stroke: a narrative review // Pain and Therapy. – 2021. – Т. 10. – С. 927-939.

30. Melià-Sorolla M. et al. Relevance of porcine stroke models to bridge the gap from pre-clinical findings to clinical implementation // International journal of molecular sciences. – 2020. – Т. 21. – №. 18. – С. 6568.

31. Melià-Sorolla M. et al. Relevance of porcine stroke models to bridge the gap from pre-clinical findings to clinical implementation // International journal of molecular sciences. – 2020. – Т. 21. – №. 18. – С. 6568.

32. Lei W. et al. Development of an early prediction model for subarachnoid hemorrhage with genetic and signaling pathway analysis // Frontiers in Genetics. – 2020. – Т. 11. – С. 391.

33. Yamada H. et al. Subarachnoid hemorrhage triggers neuroinflammation of the entire cerebral cortex, leading to neuronal cell death // Inflammation and Regeneration. – 2022. – Т. 42. – №. 1. – С. 61.

34. Vieira L. S., Laubenbacher R. C. Computational models in systems biology: standards, dissemination, and best practices // Current opinion in biotechnology. – 2022. – Т. 75. – С. 102702.

35. Gorick C. M., Saucerman J. J., Price R. J. Computational model of brain endothelial cell signaling pathways predicts therapeutic targets for cerebral pathologies // Journal of molecular and cellular cardiology. – 2022. – Т. 164. – С. 17-28.

36. Huang X., Hussain B., Chang J. Peripheral inflammation and blood–brain barrier disruption: effects and mechanisms // CNS neuroscience & therapeutics. – 2021. – Т. 27. – №. 1. – С. 36-47.

37. Miller C. et al. In silico trials for treatment of acute ischemic stroke: design and implementation // Computers in biology and medicine. – 2021. – Т. 137. – С. 104802.

38. Lin X., Li N., Tang H. Recent advances in nanomaterials for diagnosis, treatments, and neurorestoration in ischemic stroke // Frontiers in Cellular Neuroscience. – 2022. – Т. 16. – С. 885190.


Review

For citations:


Osikov M.V., Shelomentsev A.V. Modern aspects of cerebral stroke modeling. Title in english. 2024;19(4):34-39. (In Russ.)

Views: 137


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-6292 (Print)