УДК 618.3-073.43

Перспективы и ограничения ультразвуковой диагностики врожденных пороков развития плода в первом триместре беременности. Обзор.

А. И. Мозер, Э. И. Пак, Н. А. Магаз

Некоммерческое акционерное общество «Медицинский университет Караганды», Караганда, Республика Казахстан

Prospects and limitations of ultrasound diagnostics of congenital developmental defects of the fetus in the first trimester of pregnancy. A review.

A. I. Mozer, E. I. Pak, N. A. Magaz

Non-profit Joint Stock Company «Karaganda Medical University», Karaganda, Republic of Kazakhstan

Аннотация. Введение. В статье подчеркивается роль ультразвукового исследования (УЗИ) в раннем выявлении врожденных пороков развития (ВПР), особенно важных для здоровья и жизни будущего ребенка. Акцент делается на значении скрининга в первом триместре беременности для определения серьезных аномалий, таких как врожденные пороки сердца (ВПС). Цель. Осветить текущее состояние и будущие перспективы использования УЗИ в первом триместре для диагностики ВПР, подчеркнув важность этого подхода для улучшения исходов беременности и здоровья новорожденных. Материалы и методы. Поиск литературы был выполнен в базах данных PubMed, Scopus и Web of Science. Обзор охватывает ретроспективные и проспективные исследования, опубликованные в медицинских журналах, с акцентом на чувствительность и специфичность УЗИ. Результаты и обсуждение. Представлены результаты анализа данных о чувствительности и специфичности УЗИ в различных исследованиях, а также обсуждается влияние квалификации специалистов и качества оборудования на точность диагностики. Рассматриваются технические возможности и ограничения УЗИ, а также перспективы развития методик пренатального скрининга. Заключение. УЗИ в первом триместре представляет собой важный инструмент для раннего выявления ВПР. Необходимо дальнейшее совершенствование методов УЗИ, обучение специалистов и стандартизация протоколов исследования для улучшения эффективности скрининга.

Ключевые слова: ультразвуковое исследование; врожденные пороки развития; врожденные пороки сердца; пренатальный скрининг; чувствительность и специфичность УЗИ.

Abstract. Introduction. The article emphasizes the role of ultrasound (US) in the early detection of congenital developmental defects (CDD), particularly those crucial for the health and life of the future child. Focus is placed on the importance of screening in the first trimester of pregnancy to identify serious anomalies such as congenital heart defects (CHD). Purpose. To illuminate the current state and future prospects of using US in the first trimester for diagnosing CDD, underscoring the significance of this approach for improving pregnancy outcomes and newborn health. Materials and Methods. A literature search was conducted in the PubMed, Scopus, and Web of Science databases. The review covers retrospective and prospective studies published in medical journals, with an emphasis on the sensitivity and specificity of US. Results and Discussion. Results of data analysis on the sensitivity and specificity of US in various studies are presented, along with a discussion on the impact of specialist qualifications and equipment quality on diagnostic accuracy. Technical capabilities and limitations of US, as well as the prospects for developing prenatal screening techniques, are considered. Conclusion. US in the first trimester is a crucial tool for the early detection of CDD. Further improvement of US methods, specialist training, and standardization of research protocols are needed to enhance screening efficiency.

Keywords: ultrasound examination; congenital developmental defects; congenital heart defects: prenatal screening; sensitivity and specificity of ultrasound.

Введение. В последние десятилетия ультразвуковое исследование (УЗИ) стало неотъемлемой частью пренатальной диагностики, предоставляя возможность не только подтвердить факт беременности и определить срок, но и выявить различные аномалии развития плода на ранних стадиях. Особое внимание в этом контексте уделяется выявлению врожденных пороков развития (ВПР), которые могут существенно повлиять на дальнейшую жизнь и здоровье ребенка. Важность раннего обнаружения ВПР трудно переоценить, поскольку в некоторых случаях это позволяет провести необходимое лечение еще до рождения ребенка или незамедлительно после его появления на свет, а также подготовить родителей к особенностям ухода и лечения их будущего ребенка.

Данный обзор направлен на рассмотрение возможностей современного УЗИ в диагностике ВПР на самых ранних сроках беременности. Учитывая, что значительная часть врожденных аномалий может быть

успешно диагностирована уже в первом триместре, исследование акцентирует внимание на методах и стратегиях скрининга, а также на чувствительности и специфичности ультразвукового исследования в выявлении особенно серьезных состояний, таких как врожденные пороки сердца (ВПС).

Среди ключевых аспектов, которые будут рассмотрены в статье, — технические возможности и ограничения УЗИ, влияние квалификации специалистов и качества оборудования на точность диагностики, а также перспективы развития методик пренатального скрининга. Особое внимание будет уделено анализу статистических данных по чувствительности и специфичности УЗИ в разных клинических исследованиях, а также обсуждению влияния полученных результатов на клиническую практику и решения, принимаемые специалистами и будущими родителями.

Цель статьи — охарактеризовать текущее состояние и перспективы использования ультразвукового

исследования в первом триместре беременности для скрининга и ранней диагностики врожденных пороков развития плода, подчеркнув значимость этого подхода для улучшения исходов беременности и здоровья детей.

Материалы и методы

Дизайн исследования

Проведен систематический обзор литературы с целью оценки выявляемости врожденных пороков развития плода при ультразвуковом исследовании (УЗИ) в первом триместре беременности. Анализ включал ретроспективный и проспективный анализ статей, опубликованных в медицинских журналах.

Критерии включения

В обзор были включены 62 статьи, опубликованные на английском языке преимущественно с 2019 по 2024 годы, описывающие использование ультразвука для раннего выявления врожденных пороков развития, в рецензируемых журналах.

Критерии исключения

Из анализа были исключены статьи, которые не предоставляли конкретных данных о чувствительности и специфичности УЗИ в выявлении врожденных пороков, а также исследования, фокусировавшиеся исключительно на втором и третьем триместрах беременности. Также были исключены обзоры, мета-анализы и статьи без доступа к полному тексту.

Методы поиска

Поиск литературы был выполнен в базах данных PubMed, Scopus и Web of Science с использованием ключевых слов и их комбинаций: «первый триместр беременности», «ультразвуковое исследование», «врожденные пороки развития», «чувствительность УЗИ», «специфичность УЗИ». Дополнительный поиск проводился в списке литературы включенных статей для идентификации потенциально пропущенных исследований.

Отбор исследований

Отбор статей осуществлялся в два этапа: предварительный отбор по заголовкам и аннотациям, затем полный анализ текстов отобранных статей. Отбор проводился двумя независимыми оценщиками; в случае расхождения между оценщиками принималось консенсусное решение.

Анализ данных

В процессе анализа были извлечены и синтезированы данные о чувствительности и специфичности ультразвукового исследования из отобранных исследований, включая информацию об авторах, годе публикации, характеристиках исследуемой популяции, типах врожденных пороков развития, применяемых методологиях УЗИ, а также общие выводы по каждому исследованию. Поскольку статья носит обзорный характер, прямой статистический анализ результатов исследований не проводился; вместо этого осуществлялся качественный синтез полученной информации для выявления общих тенденций, а также потенциальных методологических различий и их влияния на результаты диагностики врожденных пороков развития при ультразвуковом исследовании плода в первом триместре беременности.

Результаты

Сравнение с другими методами фетальной диагностики

1. Магниторезонансная томография (MPT) и УЗИ.

Диагностика ЦНС

УЗИ обеспечивает высококачественные изображения мозга, особенно при использовании эндова-

гинального подхода, но визуализация всего мозга и субарахноидального пространства ограничена из-за акустической тени от окостеневшего черепа [1]. МРТ предлагает последовательные ортогональные срезы всего мозга без ограничений, связанных с наличием кости, выделяясь в диагностике как развивающихся, так и приобретенных внутричерепных аномалий [2].

Оценка лица и шеи

УЗИ точно отображает спектр аномалий головы и шеи, если лицо и передняя часть шеи не закрыты из-за положения плода. МРТ консистентно демонстрирует заднюю часть неба независимо от положения плода и используется для выявления изолированных расщелин неба [3].

Оценка грудной клетки

УЗИ является основным методом скрининга аномалий грудной клетки, идентификации конкретных легочных поражений и наличия жидкости в плевральном пространстве. МРТ обеспечивает дополнительную информацию о структуре и прогностических импликациях в этих случаях, полезную для оценки и планирования лечения [4].

Оценка сердцебиения

Эхокардиография превосходит МРТ в демонстрации нормальных и аномальных структур сердца благодаря возможности получения реальных объемных данных в реальном времени [5].

Оценка брюшной полости

Анатомия брюшной полости хорошо визуализируется как УЗИ, так и МРТ, особенно после 18 недель, когда оба метода используют жидкость и меконий в кишечнике в качестве контрастного материала [6].

Костная система и конечности

УЗИ остается методом выбора для измерения длинных костей и наблюдения за тонкими деталями, включая аномальное положение пальцев и полидактилию. МРТ обеспечивает комплексное отображение тела плода, включая зависимую сторону, которая может быть сложнодоступна при УЗИ [7].

Сложные пороки развития

Часто плод может иметь мальформации нескольких органов. МРТ быстро отображает весь плод и содержимое матки, диагностируя широкий спектр аномалий и обеспечивая более точный диагноз [8].

Плацента, многоводие и маловодие

МРТ используется для оценки перфузии плаценты и может оказаться ценным в прогнозировании задержки роста плода и расстройств трансфузии между плодами, позволяя раннее и более эффективное вмешательство [9].

Пуповина и сосудистая визуализация

Патологии пуповины в основном диагностируются с помощью УЗИ благодаря прямой визуализации. МРТ может отображать пуповину независимо от положения плода [10].

Метаболические заболевания плода

Метаболические заболевания плода может быть трудно или даже невозможно распознать с помощью любого метода пренатальной визуализации. Поскольку материнский организм обычно компенсирует любой метаболический дефект, морфологических изменений в мозге и других органах плода не происходит [11]. Исключением являются такие заболевания, как дефицит пируватдегидрогеназы, который связан с дисгенезией мозолистой оболочки и паренхиматозными поражениями [12, 13, 14]

Наблюдение за поведением плода и использование MPT как метода скрининга

Динамическая МРТ имеет преимущество в наблю-

дении за всем плодом, особенно на поздних сроках беременности [15]. Предварительный опыт использования МРТ для скрининга аномалий развития плода показывает ее потенциал, хотя каждое обнаруженное отклонение требует дополнительной диагностики с помощью МРТ и/или УЗИ [3].

Материнские показания для проведения исследования

Специалисты по ультразвуковому исследованию часто получают запросы на выполнение абдоминальных сканирований на поздних сроках беременности по различным материнским показаниям. Кроме того, обследование матки и придатков является стандартной частью акушерского сканирования. Визуализация живота и придатков может быть технически сложной из-за смещения кишечника, наполненного газами, расширяющейся маткой. Обзорные МРТ-снимки предоставляют отличную возможность для анализа материнской анатомии в трех ортогональных плоскостях без вмешательства газов кишечника. Видимы верхние абдоминальные органы, кишечник, почки, мочевой пузырь, массы яичников и придатков, анатомия матки, положение плаценты и анатомия шейки матки, при необходимости могут быть получены дополнительные целенаправленные последовательности [16, 17]. МРТ также может быть полезна для визуализации материнского живота и таза, когда УЗИ осложнено из-за ожи-

2. Аминоцентез и биопсия ворсин хориона (БВХ) в сравнении с УЗИ диагностикой

Амниоцентез и биопсия ворсин хориона (БВХ) представляют собой инвазивные методы пренатальной диагностики, которые позволяют выявить генетические и хромосомные аномалии плода. Они дополняют информацию, полученную с помощью неинвазивного ультразвукового исследования (УЗИ), способного выявлять структурные аномалии развития плода. Важно подробно рассмотреть каждый из этих методов для понимания их роли в пренатальной диагностике.

Амниоцентез

Амниоцентез, как правило, проводится на сроке 15-18 недель беременности и включает в себя забор небольшого количества амниотической жидкости через брюшную стенку матери с использованием иглы под ультразвуковым контролем. Эта процедура позволяет получить клетки плода для генетического анализа, что может выявить широкий спектр хромосомных аномалий и некоторые генетические заболевания. Амниоцентез имеет относительно низкий риск осложнений, включая риск выкидыша, который составляет примерно 0,5-1% [18, 19]

Биопсия ворсин хориона (БВХ)

БВХ может быть выполнена раньше, начиная с 10-12 недель беременности, и включает в себя забор образца ткани плаценты, генетически идентичной плоду. Этот метод позволяет рано диагностировать генетические и хромосомные аномалии, обеспечивая быстрое получение результатов. Однако БВХ связана с немного более высоким риском выкидыша по сравнению с амниоцентезом, особенно после трансцервикального доступа [19, 20].

При сравнении с вышеперечисленными методами диагностики, УЗИ является неинвазивным методом, широко используемым для пренатального скрининга. Оно позволяет визуализировать структуры плода и выявить ряд структурных аномалий развития, таких как дефекты стенки живота, аномалии конечностей и некоторые врожденные пороки сердца. УЗИ обладает высокой доступностью и безопасностью, не несет риска

выкидыша, но ограничено в возможностях по диагностике генетических аномалий, для выявления которых требуются амниоцентез и БВХ [19].

Каждый из этих методов вносит важный вклад в комплексную пренатальную диагностику, позволяя выявить различные аспекты состояния плода. Выбор метода диагностики зависит от множества факторов, включая срок беременности, клинические показания и потенциальные риски для плода и матери. В некоторых случаях для получения наиболее полной клинической картины и определения стратегии ведения беременности может потребоваться комбинация нескольких метолов.

образом, ультразвуковое исследование Таким (УЗИ) остается первичным и наиболее доступным методом в пренатальной диагностике врожденных мальформаций, однако магнитно-резонансная томография (МРТ) плода выявляет определенные преимущества в демонстрации патологии головного мозга, легких, комплексных синдромов и состояний, ассоциированных с уменьшением объема амниотической жидкости. МРТ особенно полезна в случаях поздних сроков беременности, увеличенного индекса массы тела матери, дисплазии скелета и метаболических заболеваний, где УЗИ может не предоставить достаточно диагностической информации. Несмотря на то, что УЗИ остается методом выбора в первом триместре беременности и при диагностике сердечно-сосудистых аномалий, а также для скрининга, МРТ плода дополняет и углубляет возможности пренатальной диагностики, особенно в сложных и неоднозначных случаях.

3. Неинвазивное пренатальное тестирование и V3И

Ультразвуковое исследование и неинвазивное пренатальное тестирование представляют собой два ключевых метода пренатальной диагностики, каждый из которых играет важную роль в оценке состояния плода. Ультразвуковое исследование, проводимое с помощью звуковых волн, позволяет врачам наблюдать за развитием плода в утробе, включая его анатомическую структуру и физическое состояние. Этот метод особенно ценен для выявления структурных аномалий, таких как дефекты сердца и аномалии конечностей. Однако ультразвуковое исследование не может предоставить информацию о генетических аномалиях плода без дополнительного инвазивного тестирования [63].

С другой стороны, неинвазивное пренатальное тестирование, основанное на анализе крови матери, направлено на выявление хромосомных аномалий, таких как синдром Дауна, трисомия 18 и трисомия 13. Этот метод демонстрирует высокую точность в обнаружении определенных генетических состояний и является безопасным как для матери, так и для плода, поскольку исключает риск, связанный с инвазивными процедурами. Впрочем, неинвазивное пренатальное тестирование не способно определить структурные аномалии и требует подтверждения результатов с помощью других диагностических методов в случае обнаружения аномалий [64].

Таким образом, ультразвуковое исследование и неинвазивное пренатальное тестирование дополняют друг друга, обеспечивая комплексную оценку здоровья плода. Использование обоих методов в комплексе позволяет получить наиболее полную картину состояния развития плода, способствуя своевременному выявлению потенциальных рисков и планированию медицинского вмешательства. Выбор конкретного метода или их комбинации для каждой конкретной ситуации должен основываться на клинических показаниях, пред-

почтениях родителей и рекомендациях специалиста, проводящего наблюдение за беременностью.

Распространенность врожденных пороков развития Врождённые пороки развития (ВПР) — это анатомические или функциональные аномалии, возникающие в процессе внутриутробного развития. Они могут проявляться сразу после рождения или обнаруживаться в более позднем возрасте. ВПР могут варьироваться от лёгких до критических состояний, требующих немедленного медицинского вмешательства [21].

Среди наиболее часто встречающихся ВПР можно выделить [22]:

- 1. Врождённые пороки сердца (ВПС): самый распространённый тип, включает различные аномалии строения сердца и сосудов, например, открытый артериальный проток, дефекты межжелудочковой и межпредсердной перегородок. Исследование, проведённое с 1970 по 2014 год Liu Y. et al., включающее 46 работ и охватывающее 2,638,475 детей, показало, что распространённость некорригированных врождённых пороков сердца (ВПС) составляет 3.809 на 1000 детей, с заметным увеличением с 1.657 на 1000 в период с 1995 по 1999 год до 4.832 на 1000 в период с 2010 по 2014 год. Эти данные свидетельствуют о неуклонном росте выявляемости ВПС, что подчеркивает важность раннего скрининга и диагностики. Среди встречающихся типов ВПС доминировали дефекты межжелудочковой перегородки (30.3%) и межпредсердной перегородки (24.5%), за которыми следовал открытый артериальный проток (13.9%). При этом замечена тенденция к повышению распространённости некорригированных ВПС в Азии и Африке, особенно в странах с низким и средним уровнем дохода [23]. Такое увеличение может отражать улучшение скрининговых программ, позволяя предотвращать значительное увеличение числа детей, рождённых с пороками развития.
- Аномалии центральной нервной системы. Врожденные пороки центральной нервной системы (ЦНС) являются одной из наиболее распространённых групп аномалий у плодов, уступая лишь порокам развития сердца. Их частота составляет от 1 до 2 случаев на 1000 рождений, при этом эпидемиология этих аномалий подвержена влиянию окружающей среды и генетических факторов [24]. Такие дефекты имеют клиническое значение из-за высокого уровня заболеваемости и смертности, а также влияют на нейрокогнитивное и моторное развитие выживших, которые могут испытывать длительные последствия [25]. Оценка и диагностика пороков развития ЦНС в пренатальном периоде может осуществляться с помощью ультразвукового исследования в любом гестационном возрасте. Ультразвуковая оценка включает изучение мозга и спинного мозга [26]. Очень важно оценивать ЦНС плода во время пренатального периода для выявления любых изменений в его развитии и для предоставления родителям соответствующих рекомендаций по дальнейшему ведению беременности, вариантам внутриутробной терапии и определению времени/типа родоразрешения, а также постнатального лечения и прогноза.
- 3. Аномалии мочевыделительной системы. Врожденные аномалии почек и мочевыводящих путей (ВАПМП) встречаются приблизительно в 0,5% беременностей и составляют 20%—30% всех врожденных аномалий, выявляемых пренатально [27]. Несмотря на пренатальную диагностику и агрессивное лечение, они остаются одной из основных причин почечной недостаточности у детей, отвечая за 30%—50% всех детей с хронической почечной недостаточностью по всему миру [28]. Почти 90% этих состояний обнаруживаются

- пренатально, и большинство из них асимптоматичны и могут быть управляемы консервативно. Стеноз уретеропиелевого соединения (УПС) и везикоуретеральный рефлюкс (ВУР) являются наиболее распространенными ВАПМП. Другие формы включают мультикистозные диспластические почки (МКДП), первичный мегауретер, дуплицированные системы сбора, уретероцеле, почечную дисплазию и обструкцию выхода мочи из мочевого пузыря, такие как задний уретральный клапан (ЗУК) [29]
- 4. Аномалии пищеварительной системы. Врожденные пороки развития пищеварительной системы включают несколько заболеваний с различной частотой встречаемости. Пищеводная атрезия и трахеопищеводные свищи встречаются примерно у 1 из 3000 и 1 из 4000 новорожденных соответственно, причем чаще у мальчиков [30]. Около 50% пациентов имеют другие врожденные аномалии, включая комплекс VACTERL (комплекс аномалий, включающий аномалии позвоночника - vertebral, аноректальные мальформации - anorectal, кардиальные дефекты - cardiac, трахеопищеводный свищ - tracheoesophageal, аномалии почек · renal и аномалии конечностей - limb) [31], тризомии 13, 18 и 21, атрезию ануса, стеноз пилоруса и атрезию двенадцатиперстной кишки [32]. Стеноз пищевода встречается у 1 из 50 000 живорожденных и также чаще наблюдается у мужчин [33]. Одна треть случаев сопровождается атрезиями и/или свищами. Кисты пищевода составляют 15-20% всех врожденных кист желудочно-кишечного тракта, поражая 1 из 14 000 живорожденных, с легким мужским преобладанием [34]. Кисты дупликации желудка составляют менее 10% всех врожденных кист ЖКТ и могут быть связаны с аномалиями позвоночника, легких и ЖКТ [35]. Конгенитальные дивертикулы являются редкими, идентифицируемыми менее чем в 0.1% эндоскопических исследований [36]. Атрезии кишечника затрагивают 1 из 5000 живорожденных, что сопоставимо с частотой стенозов [37]. Меккелевы дивертикулы присутствуют примерно у 2% людей и симптоматичны примерно у 2% пораженных пациентов [38]. Частота встречаемости болезни Гиршпрунга оценивается в 1 случай на 5000 живорождений, с вариациями от 1 на 2000 до 1 на 12 000 [39]. Большинство аноректальных мальформаций возникают из-за неправильного развития и/или позиционирования уроректального септума в течение 6–10 недель гестации и встречаются у 1 из 5000 рождений, поражая мальчиков и девочек поровну [40].
- 5. Хромосомные аномалии. Исходные данные о распространенности дефектов плода и хромосомных аномалий, представленные в статистике Eurocat, были получены из исследования, проведенного Кадап, К.О. et al. общая распространенность дефектов плода между 2013 и 2019 годами составила 263 на 10 000 родов. Из них 46,7 на 10 000 беременностей приходились на хромосомные дефекты (живорождения, мертворождения и прерывания беременности), включая тризомию 21 (25,1 на 10 000), тризомию 18 (6,3 на 10 000) и тризомию 13 (2,3 на 10 000). Эти данные показывают, что, хотя общие хромосомные расстройства являются важными, другие дефекты плода, включая структурные дефекты, встречаются значительно чаще [41].

Индивидуальный риск общих аутосомных тризомий (21, 18 и 13) увеличивается с возрастом матери (например, риск тризомии 21 увеличивается с 1:1250 в 20 лет до 1:86 в 40 лет) [42]. Другие хромосомные аномалии часто называют редкими хромосомными дефектами. Они включают микроделеции и дупликации, а также дефекты половых хромосом. Однако они не

так редки, как может показаться из названия. Общий риск микроделеций и дупликаций составляет около 1:270, а для аномалий половых хромосом — 1:280 [43, 44]. Распространенность этих хромосомных дефектов не зависит от возраста матери. Учитывая весь спектр, риск любого хромосомного расстройства у 20-летней составляет 1:122. В этом возрасте общие тризомии составляют только 13,4% всех хромосомных аномалий. У 40-летней женщины общий риск составляет 1:40, при этом доля тризомий 21, 18 и 13 составляет 64,5% [42]. Это распределение рисков должно учитываться при консультировании женщин о наиболее подходящем тесте скрининга, учитывая, что дополнительную пользу от пренатальной диагностики структурных дефектов плода можно достичь только с помощью ультразвука.

Чувствительность и специфичность УЗЙ при первом скрининге

Ультразвуковое исследование (УЗИ) в первом триместре беременности демонстрирует чувствительность к выявлению пороков развития и хромосомных аномалий у плода, благодаря улучшению понимания эмбриологии и технологии визуализации. Нухальная прозрачность (NT), измеренная между 10 и 14 неделями, была связана с тризомией 21 уже в исследовании [45], что подтверждается последующими исследованиями [46]. Длина тела плода от макушки до крестца (CRL) показывает, что плоды с тризомиями 13 или 18 имеют меньшую длину, чем ожидалось [47]. Сердечный ритм плода (FHR) оказался контроверсиальным маркером, хотя исследования показывают его потенциал для улучшения чувствительности скрининга на анеуплоидии [48]. Отсутствие насальной кости, особенно в группах высокого риска, было демонстрировано в 73% плодов с тризомией 21[49], в то время как крупное исследование в низкорисковой популяции показало низкую чувствительность этого признака как инструмента скрининга [50]. Изменения кровотока через венозный проток, характеризующиеся отсутствием или обратным течением во время волны А, указывают на высокий процент анеуплоидий [51]. Точность и чувствительность УЗИ зависят от строго следования стандартизированным протоколам исследования и квалификации специалистов, что подчеркивает важность этих методов для раннего скрининга и диагностики, имеющих важное значение для планирования ведения беременности.

Ультразвуковое исследование (УЗИ) в первом триместре беременности играет ключевую роль в раннем выявлении врожденных мальформаций. Этот метод диагностики предлагает значительные преимущества для раннего информирования родителей и планирования медицинского ухода, включая, в некоторых случаях, возможность раннего прерывания беременности.

Чувствительность ультразвукового скрининга отражает его способность правильно идентифицировать наличие ВПС у плода. Высокая чувствительность указывает на то, что метод надежно выявляет большинство случаев ВПС, минимизируя количество ложноотрицательных результатов, когда аномалии присутствуют, но не обнаружены скринингом.

Специфичность обозначает способность УЗИ корректно идентифицировать отсутствие ВПС у плода, то есть демонстрирует низкий процент ложноположительных результатов, при которых диагностируется ВПС, хотя на самом деле его нет. Высокая специфичность важна для избежания ненужного стресса и дополнительных исследований у родителей здоровых плодов.

В исследовании, проведенном Rasiah et al., была

оценена точность ультразвукового обследования первого триместра в диагностике врожденных пороков сердца (ВПС) [52]. Основываясь на систематическом обзоре десяти исследований, включавших 1243 пациентов, были получены следующие результаты:

- Чувствительность ультразвукового исследования для выявления основных врожденных пороков сердца составила 85% (95% доверительный интервал (ДИ) 78–90%).
- Специфичность достигла 99% (95% ДИ 98–100%). Таким образом, ультразвуковое исследование плода в первом триместре демонстрирует высокую специфичность и хорошую чувствительность для точного выявления основных ВПС. Эти данные подчеркивают потенциальную пользу от ультразвукового скрининга в первом триместре, особенно для женщин, находящихся в группе высокого риска наличия у ребенка ВПС.

Исследование Y. Jeve et al. оценивало точность ультразвукового исследования (УЗИ) в первом триместре беременности для диагностики раннего эмбрионального застоя. В исследовании было включено восемь первичных статей, охватывающих четыре категории тестов с участием 872 женщин [53]. Результаты показали:

- Специфичность УЗИ для диагностики раннего эмбрионального застоя была высокой, превышающей 95% в двух тестах: при наличии пустого гестационного мешка среднего диаметра ≥ 25 мм и отсутствии желточного мешка при среднем диаметре гестационного мешка ≥ 20 мм, где специфичность составила 1,00 (95% ДИ, 0,96–1,00) для обеих категорий.
- Чувствительность ультразвуковых критериев для диагностики раннего эмбрионального застоя варьировалась от 14% до 100%. Наивысшая чувствительность (1,00; 95% ДИ, 0,54–1,00) наблюдалась в исследованиях, использующих критерии отсутствия эмбриона или сердечной активности в гестационном мешке среднего диаметра 16 мм и выше.

В систематическом обзоре ультразвукового скрининга в первом триместре беременности *Karim J. N.* et al. было выявлено, что чувствительность метода для обнаружения всех типов пороков развития у плодов в группах с низким риском составляет 32,35% (95% доверительный интервал, 22,45-43,12%), для крупных аномалий в этих же группах — 46,10% (95% доверительный интервал, 36,88-55,46%), а в группах с высоким риском — 61,18% (95% доверительный интервал, 37,71-82,19%). Указывается на значимость использования стандартизированных анатомических протоколов, которые существенно увеличивают чувствительность скрининга. В работе отмечены факторы риска развития аномалий, включая возраст матери старше 35 лет, историю предыдущих случаев аномалий, родственные браки, многоплодную беременность, курение и употребление алкоголя, что подчеркивает важность комплексного подхода к оценке рисков при проведении ультразвукового исследования на ранних сроках беременности [54].

Чувствительность остаётся проблематичной по нескольким причинам:

- 1. Разнообразие клинических картин: Ранние стадии беременности могут значительно различаться между женщинами, что затрудняет стандартизацию критериев для УЗИ. Маленькие изменения, такие как размер гестационного мешка или наличие желточного мешка, могут варьировать, делая трудным точное определение раннего эмбрионального застоя [55].
- 2. Технические ограничения: Точность ультразвукового оборудования и его способность различать мелкие структуры может ограничивать чувствительность ме-

тода. Несмотря на значительные улучшения в технологии УЗИ, маленькие эмбрионы или начальные стадии сердечной активности могут оставаться нераспознанными [56]. Технические ограничения ультразвукового исследования (УЗИ) в диагностике врожденных мальформаций плода многообразны и включают качество оборудования, которое напрямую влияет на детализацию изображения; ограниченное разрешение, делающее некоторые структуры плода трудноизучаемыми на ранних сроках [57]; артефакты от физических препятствий, таких как костные структуры или увеличенный индекс массы тела матери [56]; ограниченный угол обзора из-за положения плода или анатомических особенностей матери; зависимость от опыта и квалификации оператора [58]; временные рамки исследования, которые могут быть ограничены в условиях высокой загруженности медицинских учреждений; динамика развития аномалий, которая может изменяться в течение беременности; сложности, связанные с многоплодной беременностью из-за ограниченного пространства для каждого плода; и индивидуальные анатомические особенности матери, такие как наличие рубцов после хирургических вмешательств или аномалий матки [56].

3. Опыт оператора: Умение и опыт специалиста, проводящего УЗИ, играют существенную роль. Недостаточный опыт или знания могут привести к ошибкам в интерпретации ультразвуковых данных, что снижает чувствительность метода.

В исследовании *Uğur T. et al.* было обнаружено, что опытный радиолог (оператор-2) демонстрирует значительно более высокую точность, чем менее опытный радиолог (оператор-1). Согласие между операторами по результатам УЗИ оценивалось как умеренное (К: 0,415). Точность диагностики для оператора-1 составляла 59% по нормальному сухожилию и 100% по полным разрывам, в то время как для оператора-2 эти показатели были 87% и 100% соответственно. Чувствительность для диагностики тендиноза и частичных разрывов у оператора-1 была 19% и 44%, тогда как у оператора-2 — 67% и 82% [59, 60]. Эти результаты подчеркивают критическую роль опыта в увеличении диагностической точности УЗИ.

- 4. Методологические различия в исследованиях: Несогласованность в методах, используемых различными исследованиями для оценки точности УЗИ, включая различия в фетальной биометрии и используемых ультразвуковых критериях, может привести к разнообразию в результатах чувствительности. Одним из наиболее значительных моментов является отсутствие строгого набора антенатальных или фетальных условий, которые должны быть исключены из анализа для обеспечения нормального исхода беременности, что указывает на высокий потенциал смещения в этой области [61]
- 5. Селективное смещение: Изменения в характеристиках популяции, например, различия между асимптоматическими и симптоматическими женщинами или стадиями раннего эмбрионального застоя, могут влиять на чувствительность и специфичность УЗИ [62].

Эти факторы подчёркивают сложность точной диагностики раннего эмбрионального застоя на основе УЗИ в первом триместре и необходимость дальнейших исследований для улучшения чувствительности метода.

Обсуждение результатов. Данный обзор выделяет важность использования ультразвукового сканирования в первые три месяца беременности для обнаружения аномалий развития, в том числе пороков сердца, нарушений в работе центральной нервной системы и

проблем в мочевыделительной и пищеварительной системах. Наблюдаемое увеличение детекции пороков сердца подтверждает необходимость проведения ранних диагностических мероприятий. Предоставленные в исследовании данные указывают на разнообразие частоты и видов пороков развития в зависимости от региона и демографических особенностей, что подчеркивает значимость адаптированного подхода к диагностике. Ключевыми аспектами, определяющими эффективность ультразвуковой диагностики, являются чувствительность и специфичность метода, а также квалификация специалиста и использование стандартизированных процедур, что, как показывают результаты, влияет на точность ультразвуковых измерений. Имеющиеся технические ограничения, такие как качество используемого оборудования, разрешение изображения и возможные артефакты, а также индивидуальные анатомические особенности беременной, требуют дальнейших исследований и улучшений, направленных на повышение точности диагностики.

Рекомендации авторов:

Авторы исследования подчеркивают важность комплексного подхода к усовершенствованию процесса ультразвуковой диагностики в пренатальной медицине. Для достижения максимальной эффективности и точности в выявлении врожденных пороков развития плода они предлагают следующие направления развития и улучшения:

- 1. Разработка и внедрение унифицированных процедур исследования: Стандартизация методик ультразвуковой диагностики на всех этапах исследования позволит унифицировать подходы к оценке состояния плода и снизить вероятность диагностических ошибок. Важным аспектом является формирование четких критериев оценки ультразвуковых изображений, которые будут способствовать повышению точности диагностики.
- 2. Повышение уровня подготовки и профессиональных навыков специалистов: Организация специализированных тренингов, курсов повышения квалификации и мастер-классов для врачей ультразвуковой диагностики позволит расширить их компетенции в области выявления врожденных пороков развития. Важно также включить в программы обучения освещение новейших научных исследований и клинических случаев для обмена опытом между специалистами.
- 3. Создание и внедрение новых ультразвуковых техник: Исследование и разработка передовых ультразвуковых технологий, таких как 3D/4D ультразвук и усовершенствованные допплеровские методики, могут значительно улучшить визуализацию сложных анатомических структур плода и способствовать более точной диагностике аномалий.
- 4. Интеграция искусственного интеллекта и машинного обучения: Разработка программного обеспечения, использующего алгоритмы искусственного интеллекта для анализа ультразвуковых изображений, может повысить эффективность выявления и классификации врожденных пороков развития. Это позволит автоматизировать часть процесса диагностики и сократить вероятность человеческой ошибки.
- 5. Улучшение качества ультразвукового оборудования: Сотрудничество с производителями медицинского оборудования для создания ультразвуковых аппаратов нового поколения с улучшенными характеристиками изображения, повышенным разрешением и усовершенствованными функциями анализа данных.
 - 6. Разработка международных рекомендаций по

пренатальной ультразвуковой диагностике: Формирование единых международных стандартов и рекомендаций, основанных на последних научных данных и лучших практиках, способствует обеспечению высокого уровня диагностической службы в разных странах.

Авторы подчеркивают необходимость комплексного подхода к улучшению пренатальной ультразвуковой диагностики, включая развитие методик исследования, повышение квалификации специалистов, внедрение инновационных технологий и улучшение качества оборудования. Такие меры позволят повысить точность и эффективность диагностики врожденных пороков раз-

вития и способствовать своевременному планированию лечения и ведению беременности.

Заключение. Ультразвуковое исследование в первом триместре беременности является ценным инструментом для раннего выявления врожденных пороков развития. С учетом постоянного развития технологий и методик, УЗИ предоставляет важные возможности для ранней диагностики и планирования медицинского ухода. Необходимость в дальнейшем совершенствовании методов УЗИ, обучении специалистов и стандартизации протоколов исследования остается актуальной для повышения чувствительности и специфичности скрининга на врожденные пороки развития.

Литература

- 1. Duc N. M. et al. Detecting fetal central nervous system anomalies using magnetic resonance imaging and ultrasound //Medical Archives. -2021.-T.75.-Ne. 1. -C.45.
- 2. Pimentel I., Costa J., Tavares Ó. Fetal MRI vs. fetal ultrasound in the diagnosis of pathologies of the central nervous system // European Journal of Public Health. − 2021. − T. 31. − №. Supplement 2. − C. ckab120. 079
- 3. Zemet R. et al. Prenatal diagnosis of congenital head, face, and neck malformations—is complementary fetal MRI of value? // Prenatal diagnosis. − 2020. − T. 40. − №. 1. − C. 142-150.
- 4. Adams N. C. et al. Fetal ultrasound and magnetic resonance imaging: a primer on how to interpret prenatal lung lesions //Pediatric Radiology. 2020. T. 50. C. 1839-1854.
 - 5. Marini D. et al. MR imaging of the fetal heart //Journal of Magnetic Resonance Imaging. 2020. T. 51. №. 4. C. 1030-1044.
- 6. Abbas H. M. et al. Additive value of fetal MRI to different ultrasound modalities in diagnosis of fetal GIT and abdominal wall anomalies //Egyptian Journal of Radiology and Nuclear Medicine. − 2023. − T. 54. − №. 1. − C. 59.
- 7. Chauvin N. A. et al. Magnetic resonance imaging of the fetal musculoskeletal system //Pediatric Radiology. 2020. T. 50. C. 2009-2027.
- 8. Davidson J. R. et al. Fetal body MRI and its application to fetal and neonatal treatment: an illustrative review // The Lancet Child & Adolescent Health. -2021. -T. 5. -N₂. 6. -C. 447-458.
 - 9. Arthuis C. et al. MRI based morphological examination of the placenta //Placenta. 2021. T. 115. C. 20-26.
- 10. Sherer D. M. et al. Current perspectives of prenatal sonography of umbilical cord morphology //International Journal of Women's Health. 2021. C. 939-971.
 - 11. Prayer D. et al. MRI of fetal acquired brain lesions //European journal of radiology. −2006. − T. 57. − № 2. − C. 233-249.
- 12. Soares-Fernandes J. P. et al. Neonatal pyruvate dehydrogenase deficiency due to a R302H mutation in the PDHA1 gene: MRI findings //Pediatric Radiology. 2008. T. 38. C. 559-562.
- 13. Hu H. H. et al. Magnetic resonance imaging of obesity and metabolic disorders: Summary from the 2019 ISMRM Workshop // Magnetic resonance in medicine. 2020. T. 83. №. 5. C. 1565-1576.
- 14. Moroni I. et al. Cerebral white matter involvement in children with mitochondrial encephalopathies //Neuropediatrics. − 2002. − T. 33. − №. 02. − C. 79-85.]
- 15. Singh A., Salehi S. S. M., Gholipour A. Deep predictive motion tracking in magnetic resonance imaging: application to fetal imaging //IEEE transactions on medical imaging. − 2020. − T. 39. − №. 11. − C. 3523-3534.
- 16. Leyendecker J. R., Gorengaut V., Brown J. J. MR imaging of maternal diseases of the abdomen and pelvis during pregnancy and the immediate postpartum period //Radiographics. −2004. − T. 24. − № 5. − C. 1301-1316.
- 17. Ertl-Wagner B. et al. Fetal magnetic resonance imaging: indications, technique, anatomical considerations and a review of fetal abnormalities //European radiology. −2002. −T. 12. −№. 8. −C. 1931-1940.
- 18. Chaksuwat P. et al. A comparison of pregnancy outcomes after second-trimester amniocentesis between cases with penetration of the placenta and nonpenetration //The Journal of Maternal-Fetal & Neonatal Medicine. − 2021. − T. 34. − № 23. − C. 3883-3888.
- 19. Alfirevic Z., Navaratnam K., Mujezinovic F. Amniocentesis and chorionic villus sampling for prenatal diagnosis //Cochrane Database of Systematic Reviews. − 2017. − № 9.
- 20. Monni G. et al. The decline of amniocentesis and the increase of chorionic villus sampling in modern perinatal medicine //Journal of Perinatal Medicine. − 2020. − T. 48. − № 4. − C. 307-312.
 - 21. Toufaily M. H. et al. Causes of congenital malformations //Birth defects research. −2018. − T. 110. − №. 2. − C. 87-91.
- 22. Corsello G., Giuffrè M. Congenital malformations //The Journal of Maternal-Fetal & Neonatal Medicine. − 2012. − T. 25. − №. sup1. − C. 25-29.
- 23. Liu Y. et al. Global prevalence of congenital heart disease in school-age children: a meta-analysis and systematic review //BMC cardiovascular disorders. 2020. T. 20. C. 1-10.
- 24. Milani H. J. F. et al. Ultrasonographic evaluation of the fetal central nervous system: review of guidelines //Radiologia brasileira. 2019. T. 52. C. 176-181.
- 25. Imbard A., Benoist J. F., Blom H. J. Neural tube defects, folic acid and methylation //International journal of environmental research and public health. −2013. − T. 10. − № 9. − C. 4352-4389.
- 26. Malinger G. et al. Ultrasonography of the prenatal brain (3rd edn). Timor-Tritsch IE, Monteagudo A, Pilu G, Malinger G. 2012.
- 27. Merguerian P. A., Rowe C. K. Developmental abnormalities of the genitourinary system //Avery's Diseases of the Newborn. Elsevier, 2018. C. 1260-1273. e4.

 28. Pope J. C. 4th, Brock JW, 3rd, Adams MC, Stephens FD, Ichikawa I. How they begin and how they end: classic and new theories
- 28. Pope J. C. 4th, Brock JW, 3rd, Adams MC, Stephens FD, Ichikawa I. How they begin and now they end: classic and new theories for the development and deterioration of congenital anomalies of the kidney and urinary tract, CAKUT //J Am Soc Nephrol. 1999. T. $10. N_2. 9. C. 2018-28.$
- 29. Ichikawa I. et al. Paradigm shift from classic anatomic theories to contemporary cell biological views of CAKUT //Kidney international. − 2002. − T. 61. − № 3. − C. 889-898.
- 30. Tokarska K. et al. Guidelines for treatment of esophageal atresia in the light of most recent publications //Polish Journal of Surgery. -2022. -T. 95. -N. 1. -C. 46-52.
- 31. Tonni G. et al. Clinical presentations and diagnostic imaging of vacterl association //Fetal and Pediatric Pathology. 2023. T. 42. №. 4. C. 651-674.
- 32. van De Putte R. et al. Spectrum of congenital anomalies among VACTERL cases: a EUROCAT population-based study //Pediatric research. $-2020.-T.~87.-N_{\odot}.3.-C.~541-549.$

- 33. Brzački V. et al. Congenital esophageal stenosis: a rare malformation of the foregut //Nagoya journal of medical science. 2019. T. 81. No. 4. C. 535.
- 34. Oo A. M. Esophageal Cysts //Mastering Endo-Laparoscopic and Thoracoscopic Surgery: ELSA Manual. Singapore : Springer Nature Singapore, 2022. C. 237-241.
 - 35. Lavryk A. S. et al. Gastric duplication cyst //The Ukrainian Journal of Clinical Surgery. 2021. T. 88. №. 9-10. C. 99-101.
 - 36. Shah J. et al. Gastric diverticulum: a comprehensive review //Inflammatory intestinal diseases. 2019. T. 3. №. 4. C. 161-166.
- 37. Miscia M. E. et al. Duodenal atresia and associated intestinal atresia: a cohort study and review of the literature //Pediatric Surgery International. 2019. T. 35. C. 151-157.
- 38. Lindeman R. J., Søreide K. The many faces of Meckel's diverticulum: update on management in incidental and symptomatic patients //Current gastroenterology reports. 2020. T. 22. C. 1-8.
- 39. Puri P., Nakamura H. Epidemiology and clinical characteristics of Hirschsprung's disease //Hirschsprung's Disease and Allied Disorders. 2019. C. 167-174.
- 40. Miyake Y., Lane G. J., Yamataka A. Embryology and anatomy of anorectal malformations //Seminars in Pediatric Surgery. WB Saunders, 2022. T. 31. № 6. C. 151226.
- 41. Kagan K. O., Sonek J., Kozlowski P. Antenatal screening for chromosomal abnormalities //Archives of gynecology and obstetrics. 2022. T. 305. №. 4. C. 825-835.
- 42. Cuckle H., Morris J. Maternal age in the epidemiology of common autosomal trisomies //Prenatal diagnosis. − 2021. − T. 41. − №. 5. − C. 573-583.
- 43. [Schierbaum L. M. et al. Genome-wide survey for microdeletions or-duplications in 155 patients with lower urinary tract obstructions (LUTO) //Genes. -2021.-T.12.-N₂. 9. -C.1449.
- 44. Berglund A., Stochholm K., Gravholt C. H. The epidemiology of sex chromosome abnormalities //American Journal of Medical Genetics Part C: Seminars in Medical Genetics. Hoboken, USA: John Wiley & Sons, Inc., 2020. T. 184. №, 2. C. 202-215.
- 45. Bronshtein M. et al. First-trimester and early second-trimester diagnosis of nuchal cystic hygroma by transvaginal sonography: diverse prognosis of the septated from the nonseptated lesion //American journal of obstetrics and gynecology. − 1989. − T. 161. − №. 1. − C. 78-82.
- 46. Cuckle H. S., Nanchahal K., Wald N. Birth prevalence of Down's syndrome in England and Wales //Prenatal diagnosis. -1991.-T.11.-N. 1.-C.29-34.
- 47. Merkatz I. R. et al. An association between low maternal serum α-fetoprotein and fetal chromosomal abnormalities //American journal of obstetrics and gynecology. 1984. T. 148. №. 7. C. 886-894.
- 48. Sherer D. M. et al. Noninvasive First-Trimester Screening for Fetal Aneuploidy //Obstetrical & Gynecological Survey. − 1999. − T. 54. − №. 11. − C. 42-48.
- 49. Malone F. D. et al. First-trimester nasal bone evaluation for an euploidy in the general population //Obstetrics & Gynecology. − 2004. − T. 104. − №. 6. − C. 1222-1228.
- 50. Cicero S. et al. Absence of nasal bone in fetuses with trisomy 21 at 11–14 weeks of gestation: an observational study //The lancet. 2001. T. 358. №. 9294. C. 1665-1667.
- 51. Matias A. et al. Screening for chromosomal abnormalities at 10–14 weeks: the role of ductus venosus blood flow //Ultrasound in Obstetrics and Gynecology: The Official Journal of the International Society of Ultrasound in Obstetrics and Gynecology. − 1998. − T. 12. − №. 6. − C. 380-384.
- 52. Rasiah S. V. et al. A systematic review of the accuracy of first-trimester ultrasound examination for detecting major congenital heart disease //Ultrasound in Obstetrics and Gynecology: The Official Journal of the International Society of Ultrasound in Obstetrics and Gynecology. −2006. −T. 28. − №. 1. −C. 110-116.
- 53. Jeve Y. et al. Accuracy of first-trimester ultrasound in the diagnosis of early embryonic demise: a systematic review //Ultrasound in obstetrics & gynecology. −2011. −T. 38. − №. 5. −C. 489-496.
- 54. Karim J. N. et al. Systematic review of first-trimester ultrasound screening for detection of fetal structural anomalies and factors that affect screening performance //Ultrasound in Obstetrics & Gynecology. −2017. −T. 50. −№ 4. −C. 429-441.
- 55. Spampinato M. D. et al. Diagnostic accuracy of Point Of Care UltraSound (POCUS) in clinical practice: A retrospective, emergency department based study //Journal of Clinical Ultrasound. − 2024. − T. 52. − №. 3. − C. 255-264.
- 56. Rayburn W. F., Jolley J. A., Simpson L. L. Advances in ultrasound imaging for congenital malformations during early gestation // Birth Defects Research Part A: Clinical and Molecular Teratology. 2015. T. 103. No. 4. C. 260-268.
- 57. Christensen-Jeffries K. et al. Super-resolution ultrasound imaging //Ultrasound in medicine & biology. −2020. − T. 46. − №. 4. − C. 865-891.
- 58. Kvåle Løvmo M. et al. Ultrasound-induced reorientation for multi-angle optical coherence tomography //Nature Communications. 2024. T. 15. №. 1. C. 2391.
- 59. Toprak U. et al. Diagnostic accuracy of ultrasound in subscapularis tendon abnormalities and the importance of operator experience //Acta orthopaedica et traumatologica turcica. − 2020. − T. 54. − № 4. − C. 423.
- 60. Pugash D. et al. Prenatal ultrasound and fetal MRI: the comparative value of each modality in prenatal diagnosis //European journal of radiology. − 2008. − T. 68. − № 2. − C. 214-226.
- 61. Ioannou C. et al. Systematic review of methodology used in ultrasound studies aimed at creating charts of fetal size //BJOG: An International Journal of Obstetrics & Gynaecology. -2012. -T. 119. -N. 12. -C. 1425-1439.
- 62. Kuc R. Estimating acoustic attenuation from reflected ultrasound signals: Comparison of spectral-shift and spectral-difference approaches //IEEE transactions on acoustics, speech, and signal processing. − 1984. − T. 32. − № 1. − C. 1-6.
- 63. Buca D. et al. Outcome of fetuses with congenital cytomegalovirus infection and normal ultrasound at diagnosis: systematic review and meta-analysis //Ultrasound in Obstetrics & Gynecology. − 2021. − T. 57. − № 4. − C. 551-559.
 - 64. Carbone L. et al. Non-invasive prenatal testing: current perspectives and future challenges //Genes. 2020. T. 12. № 1. C. 15.

Сведения об авторах

Мозер Анжелика Ионио, врач-резидент радиолог, некоммерческое акционерное общество «Медицинский университет Караганды», Республика Казахстан

Адрес: 100000, г. Караганда, ул. Гоголя, 40, электронная почта lyaudenskayte@kgmu.kz

Пак Элина Ильинична, врач-резидент радиолог, некоммерческое акционерное общество «Медицинский университет Караганды», Республика Казахстан

Электронная почта pake@qmu.kz

Магаз Назерке Асқарқызы, врач-резидент радиолог, некоммерческое акционерное общество «Медицинский университет Караганды», Республика Казахстан

Электронная почта mza11122@gmail.com